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Low-temperature interface between the gas and solid phases of hard spheres
with a short-ranged attraction

Richard P. Sear*
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom

~Received 16 September 1998!

At low temperature, spheres with a very short-ranged attraction exist as a near-close-packed solid coexisting
with an almost infinitely dilute gas. We find that the ratio of the interfacial tension between these two phases
to the thermal energy diverges as the range of the attraction tends to zero. The large tensions when the
interparticle attractions are short ranged may be why globular proteins only crystallize over a narrow range of
conditions.@S1063-651X~99!00706-0#

PACS number~s!: 68.10.Cr, 68.35.2p, 82.70.Dd
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I. INTRODUCTION

The interfacial tension is a useful quantity to know, as
not only defines the cost of an interface but is also a cen
feature in the classical nucleation theory of first order ph
transitions @1#. However, the interfacial tension betwee
solid and fluid phases is unknown for all but a very fe
off-lattice microscopic models. Even for the very simp
hard-sphere potential, a consensus on its value has onl
cently been reached@2,3#. This is despite the fact that w
have known the bulk phase diagram of hard spheres fo
years@4#. The reason for the lack of calculations of surfa
tensions is due to their difficulty: a calculation of the inte
facial tension of hard spheres is a formidable problem
density functional theory@2,3#. Here we calculate the inter
facial tension of hard spheres with a very short-ranged att
tion. The limiting case when the range tends to zero is theb0

model of Stell and co-worker@5,6#. The phase behavior o
the b0 model is straightforward, if a little peculiar. Above
certain temperatureTcoll , the behavior is identical to that o
hard spheres~below close packing@7#!, and below this tem-
perature they phase separate into an infinitely dilute gas
existing with a close-packed solid@5–9#.

The bulk solid phase of spheres with a very short-ran
attraction can be described, due to its very high density,
curately and simply using a cell theory@10#. We will extend
our previous cell theory treatment of the bulk@9# to the in-
terface in order to calculate the interfacial tension anal
cally. Of course, the interfacial tension between a solid a
another phase depends on the orientation of the inter
with respect to the lattice of the solid. We calculate it wh
the surface of the solid is one of a few of the low ind
lattice planes.

The b0 limit with its zero-ranged attraction is a pure
mathematical limit, unobtainable in an experiment. Howev
there are two types of colloidal systems where the attrac
has a range which is small in comparison to that of the h
repulsive interaction. These are mixtures of colloidal p
ticles with either smaller particles@11–14# ~which may be
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surfactant micelles@15#! or small polymer coils@16#, and
globular protein molecules@17–20#.

II. MODEL AND BULK PHASE BEHAVIOR

First, we define the well-known square-well potential. It
the spherically symmetric pair potentialu(r ) defined by

u~r !5H `, r<s

2e, s,r<s~11d!

0, r .s~11d!,

~1!

wheres is the hard-sphere diameter, andr is the separation
between the centers of the spheres. Here we will always
considering short-ranged attractions,d!1. The first person
to consider very short-ranged attractions was Baxter@21#
who considered a potential with zero range,d50, and with a
well depthe/T adjusted so that the second virial coefficie
was of order unity. This model is often termed the stick
sphere model. Within it the second virial coefficient is us
as a temperature like variable. However, Stell@5# showed
that the sticky-sphere model was pathological, its fluid ph
is unstable at all nonzero densities. Therefore, we will
consider this model, but instead will follow Stell when w
take the limitd→0, thus obtaining hisb0 model @5#.

The bulk phase behavior of theb0 model is described in
Refs.@5–7,9#. If the two limits d→0 andT/e→0 are taken
such thatT.Tcoll then the equilibrium phase behavior
identical to that of hard spheres. IfT,Tcoll , then the behav-
ior is radically different: a close-packed solid coexists with
fluid phase of zero density. This close-packed solid may
either face-centered-cubic or hexagonal-close-packed;
have the same number of nearest neighbors and the s
maximum density, and so will have very similar free ene
gies. Because of this we do not specify which one is actu
formed. The temperatureTcoll is @5,6,9#

Tcoll

e
5

2

ln~1/d!
. ~2!

Note that we have used energy units for the temperature,
units in which Boltzmann’s constant equals unity.
6838 ©1999 The American Physical Society
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III. INTERFACIAL TENSION

AboveTcoll the interface between the coexisting fluid a
solid phases is identical to that of hard spheres; see R
@2,3,22# for work on the interface between solid and flu
phases of hard spheres. BelowTcoll the gas-solid interface
will be very different: it will be very narrow. The free ene
gies per particle (/T) in the coexisting solid and gas phas
approach2` as theb0 limit is taken, while at intermediate
densities—all densities which are nonzero and below cl
packing—the free energy is much higher@9#. Thus we expect
the density will remain almost at its value in the bulk so
even in the outermost layer of the solid before dropp
abruptly to zero. We will calculate the surface tension on
basis that only the outermost layer of the solid differs fro
the bulk. The solid layer beneath it, and the gas phase r
up to the solid, are assumed to be identical to the bulk s
and gas phases, respectively.

The free energy of a bulk solid phase can be estima
using a cell theory@10#. A cell theory starts from the one
particle partition functionq1 of a particle trapped in a cel
formed from its neighboring particles fixed at the positio
they occupy in a ideal lattice. The free energy per particleas
is then obtained from

as

T
52 ln q1 , ~3!

whereq1 is defined to be in units ofs3, and a term which is
the logarithm of the thermal volume of a sphere divided
s3 is neglected. For a close-packed solidq1 is ~see Ref.@9#!,

q1.d3 exp~6e/T!, r.
rcp

~11d/2!3
. ~4!

rcp5A2s23 is the close-packed density of a close-pack
solid of hard spheres. The restriction on the minimum d
sity of the solid ensures that the sphere is close enough t
12 of its neighbors to interact via the attraction. Inserting E
~4! into Eq. ~3! yields

as

T
523 lnd2

6e

T
, r.

rcp

~11d/2!3
. ~5!

The first term in Eq.~5! is the logarithm of the volume avail
able to the center of a sphere, and the second term is~half! its
energy of interaction with its 12 neighbors. The volum
available to the center of a sphere is not preciselyd3 but is
cd3, wherec is a prefactor of order unity. We have neglect
the lnc term in Eq.~5!, as it is of order unity while the othe
terms diverge in theb0 limit.

Equation~5! gives the free energy per sphere in the in
rior of the solid phase. The free energy per sphere in
outermost layer will be different. It will be given by an ex
pression of the form of Eq.~3!, but in whichq1 is replaced
by the partition function of a particle in the outermost lay
q1

s . A particle in the outermost layer has fewer neighbo
than in the bulk; recall that the coexisting gas is at very l
density, so there are almost no interactions between the
ermost layer and the gas. How many fewer neighbors
pends on which lattice plane forms the outermost layer.
fs.
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denote the number of missing neighbors byzm ; it is equal to
3 for an interface in the 111 plane of a face-centered-cu
lattice. So the energy of a particle in the outermost laye
(62zm/2)e. All we now need is the available volume for
particle in the outermost layer. The particle can only explo
a volume greater than;d3 at a cost of no longer being
within d of all its remaining 122zm neighbors, and so in-
creasing the energy. It is easy to see that if the particle mo
over a distance much larger thand in any one direction, then
it can only remain withind of two particles: its motion con-
sists of rolling over the surfaces of a pair of adjacent sphe
and so is restricted to a volume of orderd2s. Thus, the
entropy gain (3T) is 2T ln d, but the energy cost is (10
2zm)e. For the solid to be stable the temperature must
below Tcoll @Eq. ~2!#, and so2T ln d,2e. The entropy gain
is then only greater than the energy cost whenzm.8. Similar
arguments apply for allowing a particle to move over a d
tance much larger thand in two or three directions. This is
only favorable whenzm.7 andzm.6, respectively. For any
flat outer layerzm will be less than 6, and the outermo
particles will rattle inside a volume of orderd3 as they do in
the bulk. This is consistent with our assumption that only
outermost layer of the solid differs from the bulk. The pa
ticles in the layer below the outermost layer interact with
neighbors, and so have the same free energy as in the
apart from corrections of orderT.

So, forq1
s we have

q1
s.d3 exp@~62zm/2!e/T#, r.

rcp

~11d/2!3
, ~6!

which gives a free energy difference per particle between
outermost layer and the interior of the solid of

ai2as

T
5

zme

2T
, r.

rcp

~11d/2!3
. ~7!

This difference can be converted into a surface tension
dividing by the area per sphere in the outermost layer.~In
doing so we are implicitly fixing the surface of tension to
that which fixes the surface excess number of particles to
zero@23#.! For example, for a 111 surface the area per sph
is A3/2s3 andzm53, so

g1115A3es22.1.73es22, T,Tcoll . ~8!

Similarly, for the 110 and 100 surfaces of a face-center
cubic lattice, the areas per sphere areA2s2 ands2, respec-
tively, and the zm’s are 5 and 4. Thus g110

5(5/(2A2))es22.1.77es22 and g10052es22. The 111
surface has the lowest surface tension because it has the
est ratio of number of missing bonds per surface spher
area per sphere. The surface tensions are all of orderes22.
In the b0 limit the ratio e/T is infinite; recall that we are
below Tcoll . Thus the ratio of the surface tension~expressed
using the sphere diameter as a unit of length! to the thermal
energy is infinite. As the range of attraction becomes v
small, the interfacial tension becomes very large.

The assumptions which underlie the derivation of Eq.~8!
should be valid whenevere/T@1, d&0.1 and the fluid
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6840 PRE 59RICHARD P. SEAR
phase is highly dilute. The first restriction ensures that
interface is only one layer thick, the second that Eqs.~4! and
~6! are valid, and the third that the outer layer of solid do
not interact to a significant degree with the fluid phase. U
der these conditions, Eq.~8! is a good approximation for the
interfacial tension and this tension is high.

An interfacial tension of orderes22 is not a surprise. It is
what we would obtain if we just approximated the surfa
tension by theenergyper unit area needed to pull a block
solid apart to create two new surfaces; see the book by
raelachvili@24#, where he estimates interfacial tensions us
just such an approximation. Note that Eq.~8! has no explicit
dependence on the range of the attractiond, and so is a rough
estimate of the low-temperature interfacial tension even
the Lennard-Jones potential. Thene would be the well depth
of the Lennard-Jones potential.

We now compare our results with the earlier work
Marr and Gast@25,26#. This work was conducted within th
Percus-Yevick~PY! approximation for sticky spheres@21#.
PY for the sticky-sphere model was shown by Stell and
workers@5,6,8# to yield qualitatively incorrect results; it pre
dicts vapor-liquid equilibrium at a temperature
e/„ln(1/d)…. This is belowTcoll @Eq. ~2!#, and so in fact the
fluid phase is unstable at all nonzero densities. Thus the
sults of Marr and Gast@25,26# are for the interface betwee
phases which do not exist.

IV. DISCUSSION AND CONSEQUENCES

We have calculated the low-temperature interfacial t
sion of hard spheres with a very short-ranged attraction,
found that its ratio to the thermal energy per unit area is v
large. Low temperature means belowTcoll @Eq. ~2!#. In the
limit that the range of the attraction tends to zero,d→0, the
b0 limit @5#, then this ratio diverges. In this limit aboveTcoll
the attractive part of the interaction has a negligible effe
all the equilibrium properties, including the interfacial te
sion, are identical to those of hard spheres. AtTcoll , the
coexisting fluid and solid densities change discontinuousl
a
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zero and close packing (rcp), respectively@5,6,9#, and the
interfacial tension jumps to that given by Eq.~8!. If the range
d of the attraction is very small but finite then the discon
nuity at Tcoll becomes a narrow temperature range@27# over
which the fluid and solid densities at coexistence rapi
decrease and increase, respectively. Below this tempera
range the density of the fluid is very low, and our Eq.~8! for
the interfacial tension will be accurate.

When the range of the attraction is very small there
only a narrow temperature range@27# separating a high-
temperature regime in which the spheres are almost h
spheres, and a low-temperature regime where they are al
at the low-temperature limit. By ‘‘almost’’ at the low
temperature limit we mean that there is a very dilute g
coexisting with a solid with a density near close packing, a
the interfacial tension between the two phases is then v
high. This may explain the finding of George and Wilso
@28# that there is only a narrow slot in effective temperatu
within which globular proteins can be made to crystalli
@18–20#. ~Other, not necessarily contradictory, explanatio
were proposed by Poon@29#, and by ten Wolde and Frenke
@30#.! The narrow slot may correspond to the narrow te
perature range where the coexisting densities and interfa
tension change rapidly. Above this temperature range
spheres are hard-sphere-like and so only crystallize at h
density, above a volume fraction of 0.49—the density
which a fluid of hard spheres coexists with the solid@4#. At
this density the dynamics of crystallization may be slo
@31,32# due to a nearby glass transition. Below this tempe
ture range the interfacial tension is very large. The free
ergy barrier to nucleation varies as the cube of the interfa
tension, within classical nucleation theory@1#. Thus the rate
of homogeneous nucleation varies as exp(2g3), and so is
extremely small when the interfacial tension is large. W
conclude that spheres with a short-ranged attraction o
crystallize easily from a dilute solution over a narrow tem
perature range aroundTcoll : above it the spheres crystalliz
only at high density; below it the interfacial tension is lar
and hence homogeneous nucleation is extremely slow.
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